Example Compute

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}
$$

or show it does not exist.
Solution: Maybe start by trying along yama for some fixed m :

$$
\lim _{x \rightarrow 0} \frac{x^{3}+m^{3} x^{3}}{x^{2}+m^{2} x^{2}}=\lim _{x \rightarrow 0} x \frac{1+m^{3}}{1+m^{2}}=0
$$

This does not imply the limit is O (but it suggests that it might be the case).
$x^{2}+y^{2}$ in denar suggests polar:

$$
\begin{aligned}
& \lim _{\substack{r \rightarrow 0^{+} \\
\theta \text { any }}} \frac{(r \cos \theta)^{3}+(r \sin \theta)^{3}}{r^{2}} \\
= & \lim _{\substack{r \rightarrow 0^{+}}} r \underbrace{\left(\cos ^{3} \theta+\sin ^{3} \theta\right)}_{\text {this is between }-2 \text { and } 2}
\end{aligned}
$$

$$
-2 r \leqslant r\left(\cos ^{3} \theta+\sin ^{3} \theta\right) \leqslant 2 r
$$

So by Squeeze than we have

$$
\lim _{\substack{r \rightarrow 0^{+} \\ \theta \text { any }}} r\left(\cos ^{3} \theta+\sin ^{3} \theta\right)=0 \text {. }
$$

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \frac{x^{7} y^{6}+x^{3}+y^{3}+x^{2} y^{2}+y^{4}}{x^{2}+y^{2}} \\
& =0
\end{aligned}
$$

Same strategy works. Key point:)

$$
\frac{r^{13}}{r^{2}} \cos ^{2} \theta \sin ^{6} \theta
$$

Squeeze... $\longrightarrow 0$.

